INTERVENTO	AMPLIAMENTO DELL'AULA LUDICA PRESSO LA SCUOLA DE	LL'INFANZIA
	"PETER PAN" - MIRA PORTE E PRIMI INTERVENTI DI MESSA A	NORMA
	AI FINI DELL'OTTENIMENTO DEL C.P.I.	
OGGETTO	PROGETTO DEFINITIVO - ESECUTIVO	
	Opere strutturali	
	Relazione di calcolo	
INDIRIZZO	Complesso scolastico in via Bernini n.1, 30034 Mira Porte VE	
COMMITTENTE	COMUNE DI MIRA - Piazza IX Martiri n.3, 30034 Mira VE - P.I. od	368570271
PROGETTISTA	RAGGRUPPAMENTO TEMPORANEO di PROFESSIONISTI	
	MANDATARIO: Ing. Alessandra Grosso - coordinatore di proge	ttazione
	MANDANTE: Ing. Giampietro Franzoso	
	MANDANTE: Ing. Stefano Franzoso	ELABORATO
RIF.	729 - 2018	B.4.b

REV.	DATA	DESCRIZIONE REVISIONE	FILE	REDATTO	VERIFICATO	APPROVATO
01	20/10/2018	prima stesura	RdC_729_PeterPan_R01	SF	GF	AG
TIMB	RO e FIRMA	Coordinatore di progettazione	Progettista	R.U.P.		

Coordinatore di progettazione Ing. Alessandra Grosso TIMBRO e FIRMA

Progettista ing. Giampietro Franzoso

Arch. Cinzia Pasin

COMUNE DI MIRA
Piazza IX Martiri n.3
30034 Mira VE
tel. 041 5628211
info@comune.mira.ve.it

Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE Progetto:

INDICE

1.	GEN	NERALITA'	. 2
2.	NOI	RMATIVA TECNICA DI RIFERIMENTO	. 2
3.	INT	ERVENTO IN OGGETTO	. 2
4.	MA	TERIALI	. 3
	4.1.	Muratura	4
	4.2.	ACCIAIO DA CARPENTERIA	
	4.3.	BULLONI AD ALTA RESISTENZA - CLASSE 8.8	5
5.	AZI	ONI DI PROGETTO	
	5.1.	Carichi verticali sui solai	
6.	COI	MBINAZIONI DELLE AZIONI	. 6
7.	VER	RIFICA ELEMENTI STRUTTURALI	. 7
	7.1.	VERIFICA DI RIPRISTINO DI RIGIDEZZA – SETTI MURARI	7
	7.2.	VERIFICA PIEDRITTI D'ACCIAIO	
	7.3.	VERIFICA TRAVE D'ACCIAIO	10
	601	NCLUCIONI	10

Progetto: Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE

1. GENERALITA'

La presente relazione riguarda la progettazione e il calcolo delle opere strutturali relative ai lavori di ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE, via Bernini n.1.

2. NORMATIVA TECNICA DI RIFERIMENTO

Il progetto di cui sopra è conforme alle norme di leggi vigenti; in particolare la verifica è condotta secondo le prescrizioni dettate dalle sequenti norme:

- D.M. del 17/01/2018 Nuove norme tecniche per le costruzioni (G.U. n. 42 del 20/02/2018 suppl. ord. n.8)
- **D.M.** del 14/01/2008 Norme tecniche per le costruzioni (G.U. n. 29 del 04/02/2008 suppl. ord. n.30)
- Circolare del Consiglio Superiore dei LL.PP. del 02.02.2009 n. 617 Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 14/01/2008.
- Documento "Orientamenti interpretativi in merito ad interventi locali o di riparazione in edifici esistenti" del 03/10/2012 redatto dal Comitato Tecnico Scientifico - Regione Toscana.

3. INTERVENTO IN OGGETTO

Allo stato attuale, si individuano due pareti finestrate, come riportato nelle foto sottostanti

Foto 1 – Parete oggetto di intervento – vista dall'esterno

Foto 2 – Parete oggetto di intervento – vista dall'interno

Foto 3 – Parete oggetto di intervento – vista dall'esterno

Foto 4 – Parete oggetto di intervento – vista dall'interno

Progetto: Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE

L'intervento strutturale in oggetto consiste nelle sequenti lavorazioni:

- apertura di due fori di luce 5.00 m circa sulle pareti che delimitano l'attuale area ludica della scuola di infanzia "Peter Pan";
- realizzazione di due pareti finestrate a chiusura del nuovo perimetro della sala ludica della scuola dell'infanzia

Ai fini di valutare se un intervento che prevede la creazione di nuove aperture all'interno di un edificio in muratura sia da classificarsi come "intervento locale" oppure richieda verifiche di livello superiore, si può fare riferimento al criterio secondo cui:

- facendo riferimento alla "unità immobiliare" oggetto degli interventi, si definisce l'area della muratura resistente nelle due direzioni principali nello stato attuale Ax1 e Ay1;
- Analogamente, si definisce l'area della muratura resistente nelle due direzioni principali nello stato di progetto prescindendo dalle opere di rinforzo previste o già realizzate con precedenti interventi, Ax2 e Ay2;
- se $Ax_2/Ax_1 > 85\%$ e $Ay_2/Ay_1 > 85\%$ l'intervento può essere considerato come locale.

Nel caso in esame:

DIREZIONE X - STATO di FATTO		DIREZ	IONE X - ST	TATO di PRO	OGETO		DIREZIONE Y - STATO di FATTO				DIREZIONE Y - STATO di PROGETO					
dir setto	I [mm]	t [mm]	A [mm²]	dir setto	I [mm]	t [mm]	A [mm²]	'								
X 1	3100	300	930000	X 1	3100	300	930000		dir setto	I [mm]	t [mm]	A [mm²]	dir setto	I [mm]	t [mm]	A [mm²]
X 2	800	300	240000	X 2	800	300	240000		Y 1	3100	300	930000	Y 1	3100	300	930000
х з	800	300	240000	х з	800	300	240000		Y 2	800	300	240000	Y 2	800	300	240000
X 4	700	300	210000	X 4	700	300	210000		Y 3	300	300	90000	Y 3	300	300	90000
X 5	300	300	90000	X 5	300	300	90000		Y 4	700	300	210000	Y 4	700	300	210000
X 6	800	300	240000	X 6	800	300	240000		Y 5	300	300	90000	Y 5	300	300	90000
X 7	300	300	90000	X 7	300	300	90000		Y 6	1000	300	300000	Y 6	1000	300	300000
X 8	800	300	240000	X 8	800	300	240000		Y 7	800	300	240000	Y 7	800	300	240000
X 9	1000	300	300000	X 9	0	300	0		Y 8	1300	300	390000	Y 8	1300	300	390000
X 10	300	300	90000	X 10	0	300	0									
X 11	700	300	210000	X 11	0	300	0		Y 9	1100	300	330000	Y 9	0	300	0
X 12	300	300	90000	X 12	0	300	0		Y 10	300	300	90000	Y 10	0	300	0
X 13	840	300	252000	X 13	0	300	0		Y 11	500	300	150000	Y 11	0	300	0
X 14 X 15	1300 1300	300 300	390000 390000	X 14 X 15	1300 1300	300 300	390000 390000		Y 12	300	300	90000	Y 12	0	300	0
X 15 X 16	3000	300	900000	X 15 X 16	3000	300	900000		Y 13	1000	300	300000	Y 13	0	300	0
X 16 X 17	6950	300	2085000	X 16 X 17	6950	300	2085000		Y 14	1300	300	390000	Y 14	1300	300	390000
X 17 X 18	3800	300	1140000	X 17 X 18	3800	300	1140000		Y 15	1200	300	360000	Y 15	1200	300	360000
X 18 X 19	300	300	90000	X 18 X 19	300	300	90000		Y 16	2200	300	660000	Y 16	2200	300	660000
X 20	840	300	252000	X 20	840	300	252000		Y 17	7100	300	2130000	Y 17	7100	300	2130000
X 20 X 21	7000	300	252000	X 20 X 21	7000	300	252000		Y 18	3900	300	1170000	Y 18	3900	300	1170000
X 22	3900	300	1170000	X 22	3900	300	1170000		Y 19	300	300	90000	Y 19	300	300	90000
X 23	1300	300	390000	X 23	1300	300	390000		Y 20	700	300	210000	Y 20	700	300	210000
X 24	1300	300	390000	X 24	1300	300	390000		Y 21	3250	300	975000	Y 21	3250	300	975000
X 25	3100	300	930000	X 25	3100	300	930000		Y 22	3850	300	1155000	Y 22	3850	300	1155000
X 26	800	300	240000	X 26	800	300	240000		Y 23	800	300	240000	Y 23	800	300	240000
X 27	300	300	90000	X 27	300	300	90000		Y 24	700	300	210000	Y 24	700	300	210000
X 28	700	300	210000	X 28	700	300	210000		Y 25	3100	300	930000	Y 25	3100	300	930000
X 29	5200	300	1560000	X 29	5200	300	1560000		Y 26	700	300	210000	Y 26	700	300	210000
X 30	3600	300	1080000	X 30	3600	300	1080000		Y 27	3750	300	1125000	Y 20	3750	300	1125000
X 31	1500	300	450000	X 31	1500	300	450000									1575000
X 32	1200	300	360000	X 32	1200	300	360000		Y 28	5250	300	1575000	Y 28	5250	300	
X 33	300	300	90000	X 33	300	300	90000		Y 29	3500	300	1050000	Y 29	3500	300	1050000
X 34	1200	300	360000	X 34	1200	300	360000		Y 30	850	300	255000	Y 30	850	300	255000
X 35	1200	300	360000	X 35	1200	300	360000		Y 31	300	300	90000	Y 31	300	300	90000
X 36	800	300	240000	X 36	800	300	240000		Y 32	500	300	150000	Y 32	500	300	150000
X 37	7950	300	2385000	X 37	7950	300	2385000		Y 33	2300	300	690000	Y 33	2300	300	690000
			20874000				19932000	95.49%				17115000				16155000

Si può, quindi, considerare l'intervento in oggetto come un intervento locale ai sensi del punto 8.4.1 NTC2018.

I maschi murari vengono sostituiti con portali in acciaio in modo che la rigidezza dell'elemento variato non cambi significativamente.

4. MATERIALI

Il metodo di calcolo e di verifica delle sezioni adottate è quello agli stati limite come previsto dalla Normativa Italiana D.M. 17.01.2018.

Progetto: Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE

4.1. Muratura

Al fine di identificare la tipologia di muratura, la qualità di ammorsamento presente tra elementi verticali contigui e di valutare le caratteristiche di ammorsamento tra gli elementi verticali e i solai di piano, sono state eseguite verifiche in situ limitate, basate su rilievi di tipo visivo.

In particolare si annota:

La muratura è costituita di blocchi laterizi semipieni, con percentuale di foratura inferiore al 45 %; la tipologia di muratura identificata è a due paramenti, senza riempimento a sacco, con collegamenti trasversali e verticali in malta cementizia, ritenuta in buone condizioni.

L'impalcato di piano e la copertura sono costituiti da solai a travetti in laterocemento. Si ritiene, tenendo conto della qualità della connessione interna e trasversale, che i setti in muratura abbiano la capacità di assumere un comportamento monolitico in presenza delle azioni orizzontali.

Avendo effettuato un rilievo geometrico in accordo a quanto riportato punto C8A.1.A.4 della Circolare del Consiglio Superiore dei LL.PP. del 02.02.2009 n. 617, si ritiene che il livello di conoscenza acquisito sia LC1; i valori di riferimenti dei parametri meccanici della muratura sono stati ricavati dalla tabella C8A.2.1

Tabella C8A.2.1 - Valori di riferimento dei parametri meccanici (minimi e massimi) e peso specifico medio per diverse tipologie di muratura, riferiti alle seguenti condizioni: malta di caratteristiche scarse, assenza di ricorsi (listature), paramenti semplicemente accostati o mal collegati, muratura non consolidata, tessitura (nel caso di elementi regolari) a regola d'arte; f_m = resistenza media a compressione della muratura, τ_0 = resistenza media a taglio della muratura, E = valore medio del modulo di elasticità normale, E = valore medio del modulo di elasticità tangenziale, E = peso specifico medio della muratura

Tipologia di muratura	f _m (N/cm ²)	τ ₀ (N/cm ²)	E (N/mm²)	G (N/mm ²)	w (kN/m³)	
	Min-max	min-max	min-max	min-max		
Muratura in pietrame disordinata (ciottoli, pietre erratiche e irregolari)	100 180	2,0 3,2	690 1050	230 350	19	
Muratura a conci sbozzati, con paramento di limitato spessore e nucleo interno	200 300	3,5 5,1	1020 1440	340 480	20	
Muratura in pietre a spacco con buona tessitura	260 380	5,6 7,4	1500 1980	500 660	21	
Muratura a conci di pietra tenera (tufo, calcarenite, ecc.)	140 240	2,8 4,2	900 1260	300 420	16	
Muratura a blocchi lapidei squadrati	600 800	9,0 12,0	2400 3200	780 940	22	
Muratura in mattoni pieni e malta di calce	240 400	6,0 9,2	1200 1800	400 600	18	
Muratura in mattoni semipieni con malta cementizia (es.: doppio UNI foratura ≤ 40%)	500 800	24 32	3500 5600	875 1400	15	
Muratura in blocchi laterizi semipieni (perc. foratura < 45%)	400 600	30,0 40,0	3600 5400	1080 1620	12	
Muratura in blocchi laterizi semipieni, con giunti verticali a secco (perc. foratura < 45%)	300 400	10,0 13,0	2700 3600	810 1080	11	
Muratura in blocchi di calcestruzzo o argilla espansa (perc. foratura tra 45% e 65%)	150 200	9,5 12,5	1200 1600	300 400	12	
Muratura in blocchi di calcestruzzo semipieni (foratura < 45%)	300 440	18,0 24,0	2400 3520	600 880	14	

Progetto: Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE

Tensione media a compressione della muratura $f_m = 5.00 \text{ MPa}$ Resistenza media a taglio della muratura $t_0 = 0.35 \text{ MPa}$ Valore medio del modulo di elasticita' normale E = 4500 MPa Valore medio del modulo di elasticita' tangenziale G = 1350 MPa coefficiente di sicurezza per la resistenza di calcolo (azioni sismiche) $\gamma_{M,E} = 2.00$ coefficiente di sicurezza per la resistenza di calcolo (azioni gravitazionali) $\gamma_{M,G} = 3.00$ fattore di conoscenza FC = 1.35

4.2. Acciaio da carpenteria

Tipo di acciaio S235 (Fe360)

Tensione caratteristica di rottura (t<40mm)	f _{tk} ≥ 360 MPa
Tensione caratteristica di rottura (t>40mm)	f _{tk} ≥ 360 MPa
Tensione caratteristica di snervamento (t<40mm)	f _{yk} ≥ 235 MPa
Tensione caratteristica di snervamento (t>40mm)	f _{yk} ≥ 215 MPa
Resilienza	$K_V \ge 27 \text{ J/cm}^2$
Allungamento percentuale a rottura	$\epsilon_t \geq 21 \%$

Modulo elastico $E_s = 210000 \text{ MPa}$

Coefficiente di contrazione trasversale v = 0.3

Modulo di elasticità tagliante G = 80769 MPa coefficiente di espansione termica lineare $\alpha = 12.00e-6 \text{ C-1}$ Modulo di elasticità tagliante G = 80769 MPa Densità $\rho = 7850 \text{ kg/m}^3$

Stati limite Ultimi (S.L.U.)

coefficiente di sicurezza per la resistenza di sezioni di classe 1, 2, 3, 4 γ_{MO} = 1.05 resistenza di progetto per tensioni normali di sezioni di classe 1, 2, 3, 4 γ_{MO} = 1.05 fd = 223 MPa resistenza di progetto per tensioni tangenziali di sezioni di classe 1, 2, 3, 4 γ_{MO} = 1.05 fd = 223 MPa

Di seguito sono riportati i coefficienti parziali di sicurezza per gli acciai

Tab. 4.2.VII - Coefficienti di sicurezza per la resistenza delle membrature e la stabilità

Resistenza delle Sezioni di Classe 1-2-3-4	$\gamma_{M0} = 1.05$
Resistenza all'instabilità delle membrature	$\gamma_{\rm MI} = 1.05$
Resistenza all'instabilità delle membrature di ponti stradali e ferroviari	$\gamma_{\rm M1} = 1.10$
Resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori)	$\gamma_{M2} = 1,25$

La classe di duttilità scelta per la definizione dell'azione sismica, classe di duttilità bassa, prevede l'uso di sezioni di classe 8.8

4.3. Bulloni ad alta resistenza - classe 8.8

Vite: classe 8.8

Tensione di rottura a trazione f_{tb} ≥ 800 MPa

Progetto: Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE

Tensione di snervamento $f_{yb} \ge 640 \text{ MPa}$

Dado: classe 8 **Rosette:** C50

Tab. 11.3.XIII.a

Viti	Dadi	Rondelle	Riferimento		
Classe di resistenza	Classe di resistenza	Durezza	t)		
lasse di resistenza NI EN ISO 898-1:2013 6 8 6 8	UNI EN ISO 898-2:2012	Durezza			
4.6					
4.8	4; 5; 6 oppure 8		UNI EN 15048-1		
5.6		100 HV min.			
5.6	5; 6 oppure 8				
6.8	6 oppure 8				
8.8	8 oppure 10	100 HV min			
10.9	10 oppure 12	oppure 300 HV min.			

Tab. 11.3.XIII.b

Classe	4.6	4.8	5.6	5.8	6.8	8.8	10.9
f _{vb} (N/mm ²)	240	320	300	400	480	640	900
f _{th} (N/mm ²)	400	400	500	500	600	800	1000

5. AZIONI DI PROGETTO

Di seguito sono riportate le analisi dei carichi da considerarsi agenti sulle varie componenti strutturali.

5.1. Carichi verticali sui solai

a) Primo solaio (solaio a travetti)

peso proprio del solaio a travetti

carico permanente 200
Carico permanente G: 550

Carico accidentale Q (Neve): 100 [daN/m²]
Totale complessivo carico su solaio 650 [daN/m²]

350

[daN/m²]

b) Peso specifico dei materiali da costruzione

Il valore caratteristico superiore del peso specifico assunto per i materiali strutturali impiegati nella costruzione è:

calcestruzzo: $\gamma_c = 25.00 \text{ kN/m}^3$

muratura semipiena: $\gamma_m = 14.00 \text{ kN/m}^3$

legno: $\gamma_L = 6.00 \text{ kN/m}^3$ acciaio: $\gamma_S = 78.50 \text{ kN/m}^3$

6. COMBINAZIONI DELLE AZIONI

Stati limite ultimi - Combinazione fondamentale

$$F_d = \gamma_{G_1} \cdot G_{k_1} + \gamma_{G_2} \cdot G_{k_2} + \gamma_{Q_1} \cdot Q_{k_1} + \gamma_{Q_2} \cdot \Psi_{o_2} \cdot Q_{k_2} + \gamma_{Q_3} \cdot \Psi_{o_3} \cdot Q_{k_3} + \dots$$

Stati limite di esercizio

a - rara (irreversibile) $F_d = G_{k_1} + G_{k_2} + Q_{k_1} + \Psi_{02} \cdot Q_{k_2} + \Psi_{03} \cdot Q_{k_3} + \dots$

b – frequente (reversibile) $F_d = G_{k_1} + G_{k_2} + \Psi_{11} \cdot Q_{k_1} + \Psi_{22} \cdot Q_{k_2} + \Psi_{23} \cdot Q_{k_3} + \dots$

c – quasi permanente (a lungo termine) $F_d = G_{k_1} + G_{k_2} + \Psi_{21} \cdot Q_{k_1} + \Psi_{22} \cdot Q_{k_2} + \Psi_{23} \cdot Q_{k_3} + ...$

Progetto: Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψο	ψ_{1j}	Ψ2j
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso $\leq 30~\mathrm{kN})$	0,7	0,7	0,6
Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0
Categoria I – Coperture praticabili	da val	lutarsi ca	iso per
Categoria K – Coperture per usi speciali (impianti, eliporti,)		caso	,
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Tab. 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente YF	EQU	A1	A2
C 11:	Favorevoli	37	0,9	1,0	1,0
Carichi permanenti G1	Sfavorevoli	ΥG1	1,1	1,3	1,0
Caribi and the street of Com	Favorevoli	2/	0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	γ _{G2}	1,5	1,5	1,3
Azioni variabili O	Favorevoli		0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	You	1,5	1,5	1,3

⁽I) Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

7. VERIFICA ELEMENTI STRUTTURALI

7.1. Verifica di ripristino di rigidezza – Setti Murari

Gli interventi locali si definiscono come interventi che riguardano singole parti e/o elementi della struttura in modo tale da non modificare significativamente il comportamento globale della costruzione; in accordo con le Linee Guida "Orientamenti interpretativi in merito ad interventi locali o di riparazione di edifici esistenti" approvate dalla Regione Toscana con Delibera Regionale n.606 del 21/06/2010, si ritiene e che una modifica accettabile del comportamento strutturale sia valutabile considerando una variazione della rigidezza degli elementi strutturali coinvolti prima e dopo l'intervento: pertanto si prevede di contenere la variazione di rigidezza in un range pari a ± 15 %, come definito nel punto 2.1 delle Linee Guida citate.

Progetto: Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE

VERIFICA INTERVENTO LOCALE -1- DATI PROGETTO versione Ottobre 2018 1,1 - DATI MURATURA NTC 2018 - §8.4.1. Riparazione o intervento locale TIPOLOGIA MURATURA: Muratura in blocchi laterizi semipieni (percentuale foratura ≤ 45 %) CONDIZIONI MURATURA: Muratura Regolare Resistenza media a compressione 2.50 MPa Fattore di confidenza FC = 1.35 LC 1 $\tau_0^d =$ Resistenza media a taglio 0.18 MPa Coeff. di sicurezza (sisma) $\gamma_m =$ 2.00 4500 Valore medio Modulo di Young $E_d =$ MPa Altezza foro h_{netta} = 2.40 m Valore medio Mod. elasticità tagliante 1350 Lunghezza foro L_{netta} = 5.75 m $G_d =$ MPa Peso specifico medio 12.00 kN/m3 Spessore muratura 0.30 W= t_{netta} = m CARICHI 1,2 -Categoria A Ambienti ad uso residenziale Ψ_0 Ψ_2 ¥1 carichi di progetto 7 a,SLU 7 a, SLE peso proprio $G_{1k} =$ 20.06 kN/m 1.3 1.0 G_{2k} = 9.30 kN/m 1.5 1.0 carichi non permanenti 4.65 $Q_k =$ kN/m 1.5 1.0 0.7 0.5 0.3 carichi accidentale f_D SLV = DATI SETTI PRE - INTERVENTO 1,3 -30.75 kN/m **SETTO** L [mm] h [mm] A [mm²] E [MPa] K⁰[N/mm] J [mm4] G [MPa] t [mm] 1 300 300 2700 90000 6.75E+08 4500 1350 1765 2 300 320 2700 4500 1350 2128 96000 8.19E+08 3 300 760 2700 228000 1.10E+10 4500 1350 22862 4 300 320 2700 96000 8.19E+08 4500 1350 2128 5 300 320 2700 96000 8.19E+08 4500 1350 2128 31011 **SETTO** $f_D^E[kN/m]$ σ_o [MPa] V,0 [kN] K⁰[N/mm] δu^0 [mm] L_{inf} [m] b f_{td} [MPa] 1 1.00 30.75 0.10 1.50 0.26 18.57 1765 2 30.75 19.81 2128 1.00 0.10 1.50 0.26 30.75 47.05 22862 3 1.00 0.10 1.50 0.26 4 1.00 30.75 0.10 1.50 0.26 19.81 2128 5 1.00 30.75 0.10 1.50 0.26 19.81 2128

125.05

31011

6.05

Progetto: Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE

2 - DEFINIZIONE CERCHIATURA DIMENSIONE VARCO - CERCHIATURA 2,1 b = 5750 31011 N/mm Base netta varco mm piedritti = h = 2400 mm E = 210000 MPa altezza netta varco Modulo elasticità cerchiatura 2 definizione del momento di inerzia minimo per singolo piedritto per ripristinare la rigidezza 8.51E+07 mm⁴= 8506 cm⁴ con trave inferiore 2,2 - DEFINIZIONE PIEDRITTI MATERIALE CERCHIATURA: Acciaio - S235 JR SEZIONE ADOTTATA: HEA 240 TIPO ADOTTATA: HEA G h b W_x A t_w $t_{\rm f}$ J_{x} HEA [cm³] [cm⁴] [cm²] [kg/m] [mm] [mm] [mm] [mm] **HEA 240** 675 7763 240 7.5 12 76.8 60.3 230 fp SLV = 2,3 - DATI SETTI NETTI POST - INTERVENTO 30.75 kN/m **SETTO** t [mm] L [mm] h [mm] A [mm²] J [mm⁴] E [MPa] G [MPa] K² [N/mm] 1 300 0 2700 0.0033 3.33E-14 4500 1350 0 0 SETTO σ_0 [MPa] $V_t^2[kN]$ K² [N/mm] δu [mm] $f_D^E[kN/m]$ Linf [m] b ftd [MPa] 1 1.00 30.75 0.10 1.50 0.26 0.00 0 0.00 0 ######### 2,4 - RIEPILOGO DATI K⁰ [N/mm] $K^2[N/mm]$ $\Delta K[N/mm]$ ΔK [%] peggioramento complessivamente della rigidezza di parete del 31011 28303 -2708 -8.73 8.73 % < 15 % - ok! $V_t^0[kN]$ $V_t^2[kN]$ ΔV_t [kN] ΔV_{t} [%] Capacità a taglio migliorata rispetto alla cond. iniziale del 519 125 394 315.39 $\delta_{\rm ut}^{2}$ [mm] $\delta_{\rm ut}^{0}$ [mm] $\Delta \delta_{\rm ut}$ [mm] $\Delta \delta_{\rm ut}$ [%] Spostamento ultimo aumentato rispetto alla condizione iniziale

La variazione di rigidezza tra lo stato di fatto e lo stato di progetto, a seguito della realizzazione della cerchiatura in acciaio è pari al 8.73 %, compreso all'interno del range di accettabilità riportato nelle Linee Guida della Regione Toscana; a seguito dell'intervento, quindi, si otterrà una minima riduzione della rigidezza e un aumento della resistenza a taglio della parete.

di 21.48 mm

L'intervento non modificherà significativamente il comportamento globale della struttura.

355.13

6.05

27.53

21.48

Progetto: Ampliamento dell'aula ludica presso la scuola per l'infanzia "Peter Pan" in Mira Porte VE

7.2. Verifica piedritti d'acciaio

)7) (1)	PROFILO: HEA 2				40 MATERIALE : Acclaio - S235 JR							
altezza		h 2	23.00	cm		momento d'inerzia	J	7763.00	cm ⁴			
base		b 2	4.00	cm		modulo di resistenza	WEL	675.00	cm ³			
spessore anima		t _w	0.75	cm		area sezione	Α	76.80	cm ²			
spessore ali		t _f	1.20	cm		area a taglio sezione	A_{V}	20.10	cm ²			
ERIFICA AD I	N S	TABILITA	4 '			Resistenza Sezioni - instabilita'	7м1	1.05				
Senior navorale	T Species	gu di serre e eleve il tacc	Infloress affices	Cares 66 1237 1277 1277 1277 1420	perekdiru 5460	Carico critico Euleriano	N _{cr}	27934	kN			
	e	No. 41 see	127	\$	2	snellezza adimensionale	λ	0.25				
1	ŝ	40 may - by g 100 may	13	1	:	curva di instabil	ita'	a				
	2016	5 × 100 and	12	1		fattore d'imperfezione						
	+	V-10	22		•	rattore d imperiezione	α	0.21				
		4-65mm	279	1	1		ф	0.54				
1	1 .	erime formatic's califo"	queloque				X	0.99				
	10	erine firmets "s fields"	quitage	-6		Resistenza Instabilità asta	$N_{b,Rd}$	1698.22	kN			
		la pianesia	quaturque	140	1965	Sollecitazione SLU	N _{SLU}	139.15	kN			
	-	Matura "spacia", p=0.3% 6/5-20, 8/5, 20	quilinge	200	11		N _{Sd} / N _{b,Rd} =	0.08	≤1 ok!			
h Ev			quinqu	250	100	<u>Limitazioni snellezza</u>	λ_{max}	200				
The same			quitage	780	× .	raggio d'inerzia sezione	Ϊγ	10.05	cm			
Carra & sarehilite a	=1	A b	-		4	snellezza	λ	23.87	≤ 200 ok!			

7.3. Verifica trave d'acciaio

	PROFILO :	HE 240 B			,	NATERIALE	Acciaio - S235	5 JR	_
	altezza	h	240 240	cm cm	momento d'inerzia modulo di resistenza		J	11260 938	cm ⁴
	base	b					W _{EL}		cm ³
	spessore anima	t_w	10.00	cm		area sezione	Α	106.00	cm ²
	spessore all	tf	17.00	cm	area (a taglio sezione	A_{V}	33.23	cm ²
1,1 -	VERIFICA TRAVE -	SLE							
	ORDITURA TRAVE :	Solai in gene	rale						
					f _{Q.P} .=	L/292=	19.66	mm	< L / 250 ok
	SLE	- LIMITI DI D	DEFORMABI	LTA'	f Freq =	L / 284 =	20.22	mm	< L / 250 ok
	δ _{max} =	L / 250 =	23.00	mm	f _{RARA} =	L / 277 =	20.78	mm	<l 250="" ok<="" td=""></l>
	Õ _{2,max} =	L / 300 =	19.17	mm	f _{Qk} =	L/31842 =	0.18	mm	<l 300="" ok<="" td=""></l>
	SL	U - Sollecita	zioni di calc	olo	Verifica (Campo Elas	tico - SLU		
	Momento massimo di calcolo	M _{max} , SLU =		kNm	$\sigma_{\rm max} =$	211.76	MPa	0.90	≤1 ok!
	taglio massimo di calcalo	V _{max} SLU =	361.84	kN	7 max =	108.89	MPa	0.27	≤1 ok!

8. CONCLUSIONI

L'intervento si classifica come un intervento locale; la variazione di rigidezza tra lo stato di fatto e lo stato di progetto, a seguito della realizzazione della cerchiatura in acciaio, è pari all'8.73 %, compreso all'interno del range di accettabilità riportato nelle Linee Guida della Regione Toscana; a seguito dell'intervento, quindi, si otterrà una minima riduzione della rigidezza e un corrispondente aumento della resistenza a taglio della parete da cui si può dedurre che l'intervento non modificherà significativamente il comportamento globale della struttura

Il tecnico:

ing. Giampietro Franzoso

coordinatore di progettazione ing. Alessandra Grosso

VERIFICA INTERVENTO LOCALE - NTC2018

1- DATI PROGETTO

versione Ottobre 2018

1,1 - DATI MURATURA

NTC 2018 - §8.4.1. Riparazione o intervento locale

f_D SLV =

TIPOLOGIA MURATURA:	Muratura in blo	occhi lateriz	zi semipieni (p	percentuale foratura ≤ 45 %)				•
CONDIZIONI MURATURA :	Muratura Rego	lare						•
Resistenza media a compressione	$f_m^d =$	2.50	MPa	Fattore di confidenza	FC =	1.35	LC 1	
Resistenza media a taglio	$ au_0^d =$	0.18	MPa	Coeff. di sicurezza (sisma)	$\gamma_{\rm m}$ =	2.00		
Valore medio Modulo di Young	$E_d =$	4500	MPa	Altezza foro	h _{netta} =	2.40	m	
Valore medio Mod. elasticità tagliante	$G_d =$	1350	MPa	Lunghezza foro	$L_{\text{netta}} =$	5.75	m	
Peso specifico medio	W =	12.00	kN/m³	Spessore muratura	t _{netta} =	0.30	m	

1,2 - CARICHI Categoria A Ambienti ad uso residenziale

<u>carichi di progetto</u>				$\gamma_{a,SLU}$	$\gamma_{\sf a,SLE}$	Ψ_{0}	Ψ_{1}	Ψ_{2}
peso proprio	G _{1k} =	20.06	kN/m	1.3	1.0	-	-	-
carichi non permanenti	$G_{2k} =$	9.30	kN/m	1.5	1.0	-	-	-
carichi accidentale	$Q_k =$	4.65	kN/m	1.5	1.0	0.7	0.5	0.3

1,3 - DATI SETTI PRE - INTERVENTO

SETTO	t [mm]	L [mm]	h [mm]	A [mm²]	J [mm ⁴]	E [MPa]	G [MPa]	K ⁰ [N/mm]
1	300	300	2700	90000	6.75E+08	4500	1350	1765
2	300	320	2700	96000	8.19E+08	4500	1350	2128
3	300	760	2700	228000	1.10E+10	4500	1350	22862
4	300	320	2700	96000	8.19E+08	4500	1350	2128
5	300	320	2700	96000	8.19E+08	4500	1350	2128

31011

30.75

kN/m

SETTO	L _{inf} [m]	f ^E _D [kN/m]	$\sigma_{\rm 0}$ [MPa]	b	f _{td} [MPa]	V _t ⁰ [kN]	K ⁰ [N/mm]	δu^0 [mm]
1	1.00	30.75	0.10	1.50	0.26	18.57	1765	
2	1.00	30.75	0.10	1.50	0.26	19.81	2128	
3	1.00	30.75	0.10	1.50	0.26	47.05	22862	
4	1.00	30.75	0.10	1.50	0.26	19.81	2128	
5	1.00	30.75	0.10	1.50	0.26	19.81	2128	

125.05 31011 6.05

1,4 - DATI SETTI POST - INTERVENTO

$f_D^{SLV} =$	30.75	kN/m
---------------	-------	------

SETTO	t [mm]	L [mm]	h [mm]	A [mm²]	J [mm ⁴]	E [MPa]	G [MPa]	K ¹ [N/mm]
1	300	0	2700	0.0033	3.33E-14	4500	1350	0

0

SETTO	L _{inf} [m]	f ^E _D [kN/m]	$\sigma_{\rm 0}$ [MPa]	b	f _{td} [MPa]	V _t ¹ [kN]	K ¹ [N/mm]	δ u [mm]
1	1.00	30.75	0.10	1.50	0.26	0.00	0	

0.00	0	**********
0.00	U	#########

1,5 - RIEPILOGO DATI

Variazione > 15 % - SERVE RIPRISTINARE RIGIDEZZA e RESISTENZA - in accordo a Linee Guida Regione Toscana

K ⁰ [N/mm]	K ¹ [N/mm]	Δ K [N/mm]	∆ K [%]	
31011	0	-31011	-100.00	NO! peggioramento del 100 % > 15 % - necessaria cerchiatura
V _t ⁰ [kN]	V _t ¹ [kN]	ΔV_{t} [kN]	∆ V _t [%]	
125	0	-125	-100.00	peggioramento del 100 %
$\delta_{ m ut}^{=0}$ [mm]	$\delta_{ m ut}^{-1} [m mm]$	$\Delta\delta_{ m ut}$ [mm]	$\Delta \delta_{ut}$ [%]	
6.05	########	########	########	aumento dello spostamento ultimo di 11189340616680.9 mm

2- DEFINIZIONE CERCHIATURA

2,1 - DIMENSIONE VARCO - CERCHIATURA

 K^{MIN} b = 5750 · piedritti = 31011 N/mm Base netta varco mm 210000 altezza netta varco 2400 E = MPa h = mm Modulo elasticità cerchiatura

 $n_{piedritti} = 2$

675

 $f_D^{SLV} =$

7763

30.75

kN/m

definizione del momento di inerzia minimo per singolo piedritto per ripristinare la rigidezza

INCASTRO - INCASTRO $J_{min} = 8.51E+07 \text{ mm}^4 = 8506 \text{ cm}^4$ con trave inferiore

2,2 - DEFINIZIONE PIEDRITTI

HEA 240

MATERIALE CERCHIATURA: Acciaio - S235 JR TIPO ADOTTATA: HEA • **SEZIONE ADOTTATA:** HEA 240 W_x Α G h b t_f J_{x} $t_{\rm w}$ **HEA** [cm⁴] [cm³][cm² [kg/m] [mm] [mm] [mm] [mm]

7.5

12

2,3 - DATI SETTI NETTI POST - INTERVENTO

60.3

230

76.8

K² [N/mm] **SETTO** J [mm⁴] E [MPa] t [mm] L [mm] h [mm] A [mm²] G [MPa] 1 300 0 2700 0.0033 3.33E-14 4500 1350 0

240

								0
SETTO	L _{inf} [m]	f ^E _D [kN/m]	$\sigma_{\rm 0}$ [MPa]	b	f _{td} [MPa]	V _t ² [kN]	K ² [N/mm]	δ u [mm]
1	1.00	30.75	0.10	1.50	0.26	0.00	0	

0.00 0 #######

2,4 - RIEPILOGO DATI

K ⁰ [N/mm]	K ² [N/mm]	Δ K [N/mm]	∆K [%]	
31011	28303	-2708	-8.73	ok
$V_t^0[kN]$	V _t ² [kN]	ΔV_{t} [kN]	∆ v _t [%]	
125	519	394	315.39	
$\delta_{ m ut}^{\ 0}$ [mm]	$\delta_{ m ut}^{-2}[m mm]$	$\Delta\delta_{ m ut}$ [mm]	$\Delta \delta_{ut}$ [%]	
6.05	27.53	21.48	355.13	

peggioramento complessivamente della rigidezza di parete del 8.73 % < 15 % - ok!

Capacità a taglio migliorata rispetto alla cond. iniziale del 315.39 %

Spostamento ultimo aumentato rispetto alla condizione iniziale di 21.48 mm

3- VERIFICA PIEDRITTI

	PROFILO	: HEA 240		MATERIALE :	Acciaio - S235	5 JR	
altezza	h	23.00	cm	momento d'inerzia	J	7763.00	cm ⁴
base	b	24.00	cm	modulo di resistenza	W_{EL}	675.00	cm^3
spessore anima	t_w	0.75	cm	area sezione	Α	76.80	cm^2
spessore ali	t_f	1.20	cm	area a taglio sezione	A_{V}	20.10	cm^2

VERIFICA AD INSTABILITA'

	40	30.00	T		Inflormation	Curva di	instabilit
	Sezione trasversale		Limiti		inflement information all ause	9235. 5273. 9355. 9420	5460
	r===			y-y z-z	b b	26	
on man	h l	100	40 mm - tra	100 mm	3-9 2-8	ъ с	
Secon lanuale	L.L.	535	tru 100	mm	9-9 E-E	b e	1
	11	40	t _s > 200	1010	3~3/ R-R	d d	
9 9	11. 11	5±+0=mm				b e	b
Seven ad sugar			tr +9 mm	u)	77	å	e d
orre		5	enione formuna	a caldo	enpantsup	(A)	34
Account.			eriodo formata "	a traddo"	quahinqua	S#11	34
Service old spins		98	In general	le:	qualunque	3 6 /	ъ
September		10	idanus "spesse" b/t/-30: b/t,	* a=0.3t⊭ =30	dispundes		#
Secondine of U.C.T.	EW		-	E	quahanque	8811	:9
Secured		= .			disgradie	ъ	h
Curva	a di instabilita	26.		ь	(6)		d
Famor	re di imperfezione ci	0.15	0.21	0.54	0.4	6 8	0:76

3	v		
Resistenza Sezioni - instabilita'	$\gamma_{\sf M1}$	1.05	
Carico critico Euleriano	N_{cr}	27934	kN
snellezza adimensionale	λ	0.25	
<u>curva di instabi</u>	<u>lita'</u>	а	
fattore d'imperfezione	α	0.21	
	Ф	0.54	
	χ	0.99	
Resistenza Instabilità asta	$N_{b,Rd}$	1698.22	kN
Sollecitazione SLU	N_{SLU}	139.15	kN
	$N_{Sd}/N_{b.Rd} =$	0.08	≤1 ok!
<u>Limitazioni snellezza</u>	λ_{max}	200	
raggio d'inerzia sezione	iγ	10.05	cm
snellezza	λ	23.87	≤ 200 ok!

4- VERIFICA TRAVE

PROFILO : H	E 240 B			MATERIALE :	Acciaio - S235	JR	
altezza	h	240	cm	momento d'inerzia	J	11260	cm ⁴
base	b	240	cm	modulo di resistenza	$W_{\scriptscriptstyle EL}$	938	cm^3
spessore anima	t_w	10.00	cm	area sezione	Α	106.00	cm^2
spessore ali	t_f	17.00	cm	area a taglio sezione	A_{V}	33.23	cm^2

4,1 - VERIFICA TRAVE - SLE

ORDITURA TRAVE: Solai in generale

	† _{Q.P} .=	L / 292 =	19.66	mm	< L / 250 ok!
SLE - LIMITI DI DEFORMABILTA'	f _{Freq} =	L / 284 =	20.22	mm	< L / 250 ok!
δ_{max} = L/250 = 23.00 mm	f _{RARA} =	L / 277 =	20.78	mm	< L / 250 ok!
$\delta_{2,\text{max}} = L/300 = 19.17 \text{ mm}$	f _{Qk} =	L / 31842 =	0.18	mm	< L / 300 ok!

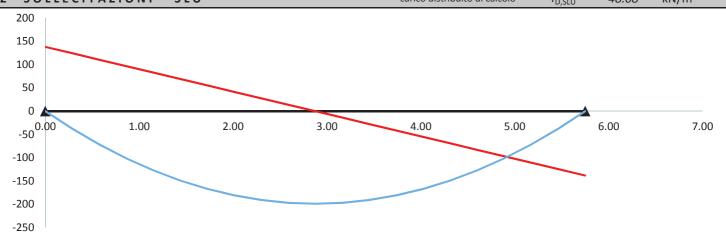
SLI	U - Sollecitazi	ioni di calco	olo	Verifica C	ampo Elas	tico - SLU		
Momento massimo di calcolo	M _{max,} SLU =	198.70	kNm	σ_{max} =	211.76	MPa	0.90	≤ 1 ok!
taglio massimo di calcolo				$ au_{max}$ =	108.89	MPa	0.27	≤ 1 ok!

VERIFICA SEZIONE TRAVE ACCIAIO - NTC2018

L =

luce trave

5.75


m

DATI PROGETTO

versione Novembre 2016

1,1 - D A T I	SEZIONE			trave	acciaio HE 24	10 B - luce 5	.75 m e passo 1 m
	PROFILO:	HE 240 B	•	Altezza	h	240	mm
				Base	b	240	mm
	PP _{trave} =	83.2	kg/m	Spessore anima	t_{W}	10	mm
				Spessore ali	t _f	17	mm
				Raggio di curvatura	r	21	mm
	TIPO ACCIAIO :	S235 - Fe360	\	Tensione a snervamento	f_{yk}	235	MPa
				Tensione a rottura	$f_{uk} \\$	360	MPa
1,2 - D A T I	CARICHI			Resistenza Sezioni	γмо	1.05	
_	interasse trave	İ _{travi} :	= 1.00 n				

contromonta	$\delta_0 =$	0.00	m					
asse principale d'inerzia	Asse y-y: asse fo	orte d'inerz	ria 🔻	Categoria A A	mbienti ad us	o residenziale		~
peso proprio	g _{1k} =	20.06	kN/m² =	2005.5	kg/m²			
carico non permanenti	g _{2k} =	9.30	$kN/m^2 =$	930	kg/m²			
carico accidentale	q _k =	4.65	kN/m² =	465	kg/m²			
carichi distribuiti di p	<u>rogetto</u>			$\gamma_{a,SLU}$	$\gamma_{\sf a,SLE}$	Ψ_{0}	Ψ_{1}	Ψ_{2}
peso proprio	G _{1k} =	20.89	kN/m	1.3	1.0	-	-	-
carico non permanenti	$G_{2k} =$	9.30	kN/m	1.5	1.0	-	-	-
carico accidentale	$Q_k =$	4.65	kN/m	1.5	1.0	0.7	0.5	0.3
<u>carichi concentrati di </u>	orogetto_						a [m]	b [m]
peso proprio	F _{1k} =	0.00	kN	X _{F1} =	0.00	m	0.00	0.00
carico non permanenti	$F_{2k} =$	0.00	kN	X _{F2} =	0.00	m	0.00	0.00
carico accidentale	$F_{qk} =$	0.00	kN	X _{F4} =	0.00	m	0.00	0.00
coppie di estremità di	<u>progetto</u>						M _{A,k} [kNm]	M _{B,k} [kNm]
peso proprio	$M_{A,1k} =$	0.00	kNm	M _{B,1k} =	0.00	kNm	0.00	0.00
carico non permanenti	$M_{A,2k} =$	0.00	kNm	$M_{B,2k} =$	0.00	kNm	0.00	0.00
carico accidentale	$M_{A,qk} =$	0.00	kNm	$M_{B,qk} =$	0.00	kNm	0.00	0.00
- SOLLECITAZIONI -	SLU			carico dist	ribuito di calco	lo f _{D SIII} =	48.08	kN/m

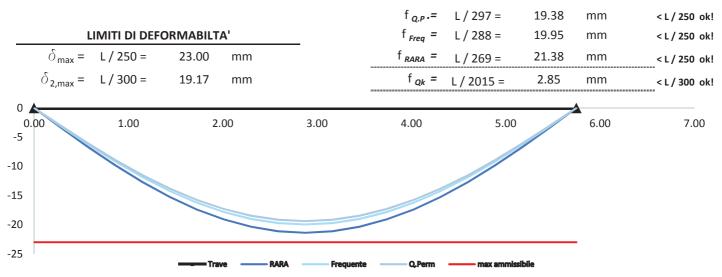
$R_A =$	138.22	kN
$V_A =$	138.22	kN
$M_A =$	0.00	kNm

$$V_{L/2} = 0.00$$
 kN $M_{L/2} = 198.70$ kNm

$$R_B = 138.22$$
 kN
 $V_B = -138.22$ kN
 $M_B = 0.00$ kNm

3- VERIFICHE A ROTTURA - SLU

3,2 - VERIFICA A ROTTURA TRAVE


	itazioni di c	calcolo	Ver	ifica Plas	tica	Ve	rifica Elast	ica	
M _{max} , SLU =	0.00	kNm	$M_{Sd}/M_{Rd}=$	0.00	≤ 1 ok!	σ_{max} =	0.00	MPa	
$V_{Mmax} =$	-138.22	kN	$V_{Sd}/V_{Rd}=$	0.32	≤ 1 ok!	$ au_{ m max}$ =	41.60	MPa	
						$\sigma_{\sf id}$ =	72.05	MPa	≤ 1 ok!
M _{max} , SLU =	-198.70	kNm	$M_{Sd}/M_{Rd}=$	0.84	≤ 1 ok!	$\sigma_{\sf max}$ =	211.76	MPa	
$V_{Mmax} =$	0.00	kN	$V_{Sd}/V_{Rd}=$	0.00	≤ 1 ok!	$ au_{ ext{max}}$ =	0.00	MPa	
						$\sigma_{\sf id}$ =	211.76	MPa	≤1 ok!
M _{Vmax} =		kNm	$M_{Sd}/M_{Rd}=$	0.00	≤1 ok!	σ_{max} =	0.00	MPa	
$V_{\text{max}}^{\text{SLU}} =$	138.22	kN	$V_{Sd}/V_{Rd} =$	0.32	≤ 1 ok!	$ au_{ m max}$ =	41.60	MPa	
						$\sigma_{\sf id}$ =	72.05	MPa	≤ 1 ok!

4- VERIFICHE IN ESERCIZIO - SLE

4,1-VERIFICA DEFORMATA

NTC 2018 - § 4.2.4.2.1 - Spostamenti Verticali

ORDITURA TRAVE: Solai in generale

4,2 - VERIFICA TENSIONI		$\sigma_{\rm amm,max}$ 235.00	MPa	$ au_{\mathrm{amm,max}}$ 135.68	MPa
- combinazione RARA		M _{max,RARA} = 143.97	kNm	V _{max,RARA} = 100.16	kN
$\sigma_{\sf max}$ = 153.44 MPa	$ au_{\mathrm{max}}$ =	30.14 MPa	$\sigma_{ID,max}$ =	162.08 MPa	≤ 1 ok!
- combinazione Frequente		M _{max,FREQ} = 134.37	kNm	V _{max,FREQ} = 93.47	kN
ு _{max} = 143.20 MPa	$ au_{\mathrm{max}}$ =	28.13 MPa	$\sigma_{ID,max}$ =	151.26 MPa	≤ 1 ok!
- combinazione Quasi Permanente		M _{max,Q.P.} = 130.52	kNm	V _{max,Q.P.} = 90.80	kN
σ_{max} = 139.11 MPa	$ au_{\mathrm{max}}$ =	27.32 MPa	$\sigma_{ID,max}$ =	146.94 MPa	≤ 1 ok!